

The mass spectrum (EI) of compound **3** contains a molecular ion peak with  $m/z = 183$  (100 %). Its  $^1\text{H}$  NMR spectrum contains two doublets of aromatic H(2) ( $\delta$  8.08) and H(4) ( $\delta$  7.07,  $J_{2,4} = 2.1$  Hz) protons along with two singlets at  $\delta$  3.74 and 3.51, which were assigned to MeO and MeN protons, respectively. More detailed information on the structure of compound **3** is obtained from the  $^{13}\text{C}$  NMR spectrum, where the line assignments were based on the chemical shifts<sup>6,7</sup> and  $J_{\text{C},\text{H}}$ <sup>8</sup> values for related compounds. The MeN signal is observed at  $\delta$  38.20. In this case the quartet components ( $^1J = 141.6$  Hz) are additionally split into doublets due to interaction with the H(2) proton ( $^3J = 3.7$  Hz). MeO gives a quartet with  $\delta$  56.61 ( $^1J = 145.3$  Hz). A MeO group in position 5 is characterized by the quartet splitting of the doublet components of the C(5) signal registered at  $\delta$  148.89 as a quintet because of equal  $^3J$  and  $^2J$  constants (3.7 Hz). The protons of the MeN group cause additional quartet splitting of the doublet-doublet components of the C(2) signal ( $\delta$  136.72,  $^3J = 3.7$  Hz); the doublet components ( $^1J = 187.8$  Hz) manifest themselves as quintets because of equal  $^3J$  constants (3.7 Hz).

## Experimental

The mass spectrum (EI, 70 eV) was recorded on an MKh-1321A spectrometer by the direct inlet of the sample into the ionization chamber of the evaporator (100 °C).  $^1\text{H}$  and  $^{13}\text{C}$  NMR spectra were recorded on a Bruker WH-90 (90 MHz and 22.62 MHz, respectively) spectrometer in DMSO-d<sub>6</sub> at 40 °C. Concentrations of substances in solutions

were 2 % and 10 %, respectively. Chemical shifts ( $\delta$ ) were measured relative to SiMe<sub>4</sub> ( $^1\text{H}$ ) and ane ( $^{13}\text{C}$ ).

**1-Methyl-5-methoxy-6-oxo-1,6-dihydro-3-pyridine carboxylic acid (3).**  $\text{Me}_2\text{SO}_4$  (2 g, 15.9 mmol) was added portionwise to a solution of acid **1** (0.5 g, 3.2 mmol) in 10% aqueous NaOH (5 mL). The mixture was stirred for 3 h at ~20 °C, the excess  $\text{Me}_2\text{SO}_4$  was extracted with ether, and the water layer was neutralized with dilute  $\text{H}_2\text{SO}_4$  to pH 4. The precipitate that formed upon cooling was filtered off, dried, and recrystallized from water with the addition of carbon. Compound **3** (0.23 g, 39 %) was obtained; m.p. 257–258 °C. Found (%): C, 52.61; H, 4.95; N, 7.72.  $\text{C}_8\text{H}_9\text{NO}_4$ . Calculated (%): C, 52.50; H, 4.91; N, 7.65.

## References

1. R. A. Abramovitch, *Pyridine and its Derivatives*, 1974, Pt. III, 745.
2. S. L. Shapiro, K. Weinberg, and L. Freedman, *J. Am. Chem. Soc.*, 1959, **81**, 5140.
3. D. A. Prins, *Rec. Trav. Chim. Pays-Bas*, 1957, **76**, 58.
4. M. Kawazu, T. Kauno, S. Saito and H. Tomaki, *J. Med. Chem.*, 1972, **15**, 914.
5. US pat. 2.212, Swiss pat. 212.521; *Chem. Abstrs.*, 1941, **35**, 4665.
6. E. Breitmaier and W. Voelter,  *$^{13}\text{C}$  NMR Spectroscopy*, Verlag Chemie, Weinheim—New York, 1978, 200.
7. E. Breitmaier, G. Haas, and W. Voelter, *Atlas of Carbon-13 NMR Data*, Heyden, 1979, **2**, 2364, 2365, 2367.
8. E. Breitmaier and W. Voelter,  *$^{13}\text{C}$  NMR Spectroscopy*, Verlag Chemie, Weinheim—New York, 1978, Chap. 3.2.2.

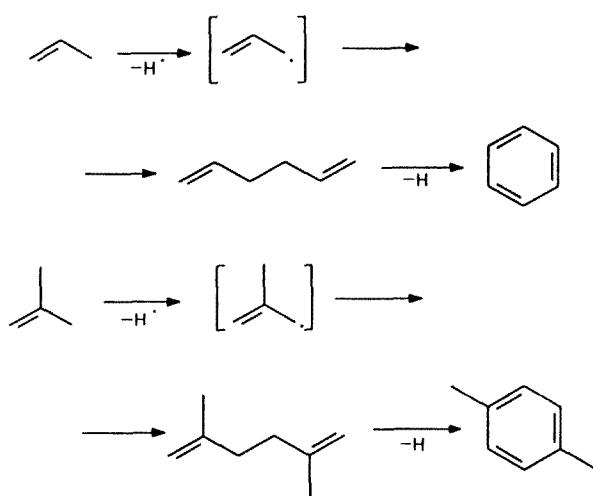
Received October 12, 1995;  
in revised form March 27, 1996

## Formation of azulene and naphthalene from piperylene

*K. M. Gitis\* and G. V. Isagulyants*

*N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,  
47 Leninsky prosp., 117913 Moscow, Russian Federation.  
Fax: +7 (095) 135 5328*

Piperylene mixed with air is converted into a mixture of aromatics containing azulene and naphthalene on contact with bismuth oxide at ~600 °C. The yield of azulene and naphthalene is 6–8 %. The reaction is accompanied by burning of some of the piperylene and by the reduction of  $\text{Bi}_2\text{O}_3$  to Bi metal. When the initial mixture is diluted with steam no reduction occurs. The reaction is believed to involve elimination of the allylic hydrogen, formation of dienyl radicals, their dimerization, and subsequent aromatization.


**Key words:** azulene, naphthalene, piperylene, dehydrodimerization.

It has been reported previously<sup>1</sup> that in the presence of some dehydrogenation catalysts, piperylene is converted into azulene (0.2–0.5 %) and naphthalene (0.3–

0.7 %). Since the yields of these products from 1-decene are markedly higher, we suggested that the transformation of piperylene into them occurs via a linear interme-

Translated from *Izvestiya Akademii Nauk. Seriya Khimicheskaya*, No. 6, pp. 1556–1558, June, 1996.

Scheme 1



diate of the composition  $C_{10}$ . If this is true, one should expect that the yields of azulene and naphthalene would

substantially increase in the presence of catalysts with pronounced dehydrodimerizing activity. One of these catalysts is  $Bi_2O_3$ ; its compositions with other oxides, in particular, with  $SnO_2$ , can also be used. Under conditions of oxidative dehydrogenation, these catalysts convert low-molecular-weight olefins into dimeric dienes, and under more rigorous conditions, olefins are converted into aromatic hydrocarbons.<sup>2-5</sup> According to the data reported previously,<sup>6-10</sup> the reaction involves abstraction of the allylic hydrogen to give allyl radicals and their subsequent dimerization (Scheme 1).

We suggested that the use of  $Bi_2O_3$ -containing catalysts in the transformation of piperylene should be favorable for the formation of dehydrodimers, and then for their conversion into the corresponding fused aromatic hydrocarbons (Scheme 2).

It was found that when piperylene mixed with air is passed over  $Bi_2O_3$  at temperatures of  $\sim 600$  °C, an intensely blue-colored liquid products is formed. The liquid products contains 6.1 % azulene and 37.7 % naphthalene; unreacted piperylene, cyclopentene, cyclopentadiene, and mononuclear  $C_6-C_{10}$  aromatic

Scheme 2

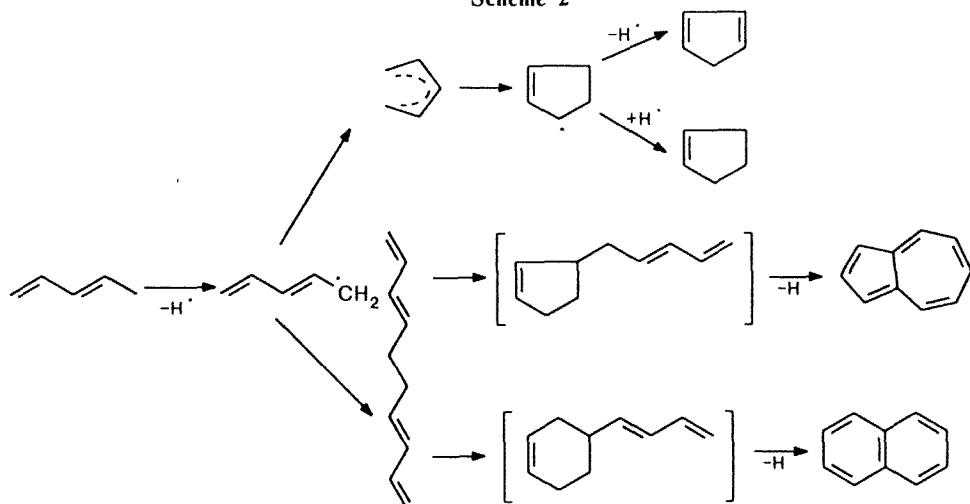



Table 1. Formation of azulene and naphthalene in the presence of bismuth oxide at 600 °C

| Run            | Residence<br>time of SGM<br>/s <sup>a</sup> | $C_5H_8:O_2$<br>ratio | Yield of<br>liquid<br>(%) | Proportions in the catalyzate (%) |                                                 |         |         |                 |                        |                  |         | Yield (%) |     |
|----------------|---------------------------------------------|-----------------------|---------------------------|-----------------------------------|-------------------------------------------------|---------|---------|-----------------|------------------------|------------------|---------|-----------|-----|
|                |                                             |                       |                           | $n-C_5H_8$                        | Cyclo-<br>pentene+<br>cyclo-<br>penta-<br>diene | Benzene | Toluene | Arenes<br>$C_8$ | Arenes<br>$C_9-C_{10}$ | Naph-<br>thalene | Azulene |           |     |
| 1              | 4.7                                         | 1:1.2:4.7:—           | 18.0                      | 10.5                              | 2.0                                             | 14.4    | 4.8     | 8.4             | 7.4                    | 37.8             | 6.1     | 6.8       | 1.1 |
| 2              | 2.8                                         | 1:0.7:8.9:—           | 30.0                      | 83.5                              | 2.5                                             | 3.5     | 0.7     | 0.6             | 0.7                    | 2.4              | 0.5     | 0.7       | 0.2 |
| 3              | 1.0                                         | 1:1.4:5.3:—           | 57.4                      | 91.7                              | 1.0                                             | 1.9     | 0.4     | 0.6             | 0.6                    | 0.8              | 0.2     | 0.5       | 0.1 |
| 4              | 4.7                                         | 1:2.1:8.4:—           | Flash of SGM              |                                   |                                                 |         |         |                 |                        |                  |         |           |     |
| 5              | 1.8                                         | 1:0.45:1.8:6          | 70.0                      | 69.4                              | 1.8                                             | 9.4     | 1.2     | 1.8             | 0.5                    | 5.7              | 2.5     | 4.0       | 1.8 |
| 6              | 2.5                                         | 1:0.45:1.8:6          | 47.8                      | 71.7                              | 2.3                                             | 6.3     | 1.3     | 2.0             | 3.1                    | 7.5              | 2.3     | 3.6       | 1.1 |
| 7 <sup>b</sup> | 1.8                                         | 1:0.45:1.7:6          | 68.2                      | 87.4                              | 1.0                                             | 3.5     | 0.4     | 0.4             | Traces                 | 0.8              | 0.5     | 0.6       | 0.4 |
| 8 <sup>c</sup> | 1.8                                         | 1:0.45:1.8:6          | 82.6                      | 85.9                              | 0.2                                             | 1.1     | 0.1     | 0.1             | Traces                 | 0.2              | 0.1     | 0.2       | 0.1 |

<sup>a</sup> Steam-gas mixture. <sup>b</sup> At 550 °C. <sup>c</sup> At 500 °C.

**Table 2.** Formation of azulene and naphthalene in the presence of mixed  $\text{Bi}_2\text{O}_3$ -containing catalysts at 600 °C

| Catalyst                                  | Residence time<br>/s | $\text{C}_5\text{H}_8:\text{O}_2:\text{H}_2:\text{H}_2\text{O}$<br>ratio<br>mol. | Yield of liquid<br>(%) | Yield (%)   |         |
|-------------------------------------------|----------------------|----------------------------------------------------------------------------------|------------------------|-------------|---------|
|                                           |                      |                                                                                  |                        | Naphthalene | Azulene |
| 20 % $\text{Bi}_2\text{O}_3-\text{SiO}_2$ | 4.7                  | 1:1.2:4.7:—                                                                      | 65.8                   | 0.1         | —       |
|                                           | 4.0                  | 1:0.7:2.5:3.7                                                                    | 90.5                   | 0.1         | —       |
| 40 % $\text{Bi}_2\text{O}_3-\text{MgO}$   | 4.7                  | 1:1.2:4.7:—                                                                      | 46.5                   | 0.1         | 0.1     |
|                                           | 4.0                  | 1:0.7:2.5:3.7                                                                    | 41.4                   | 0.2         | 0.1     |
| $\text{SnO}_2$                            | 1.8                  | 1:0.45:1.8:6                                                                     | 57.7                   | 0.3         | Traces  |
| 25 % $\text{Bi}_2\text{O}_3-\text{SnO}_2$ | 1.8                  | 1:0.45:1.8:6                                                                     | 41.7                   | 0.4         | 0.1     |
| 50 % $\text{Bi}_2\text{O}_3-\text{SnO}_2$ | 1.8                  | 1:0.45:1.8:6                                                                     | 31.1                   | 1.3         | 0.1     |
| 75 % $\text{Bi}_2\text{O}_3-\text{SnO}_2$ | 1.8                  | 1:0.45:1.8:6                                                                     | 46.0                   | 2.7         | 0.3     |
| $\text{Bi}_2\text{O}_3$                   | 1.8                  | 1:0.45:1.8:6                                                                     | 47.8                   | 3.8         | 1.1     |

hydrocarbons were also detected in it. Since the overall yield of the liquid products is rather low (16 %), the yields of azulene and naphthalene are only 1.1 and 6.8 %, respectively. The low yield of the liquid products is due to burning of some of the initial hydrocarbon. Therefore, the amount of liquid products decreases as the proportion of oxygen in the initial mixture increases or as the residence time increases (Table 1, runs 1–4). When the dilution with air is too high (run 4), the reaction mixture explodes; while at low dilutions (run 1),  $\text{Bi}_2\text{O}_3$  is partly reduced to metallic bismuth. The use of steam as the diluent makes it possible to avoid the reduction of  $\text{Bi}_2\text{O}_3$  even at low proportions of air in the reaction mixture. Simultaneously, the yield of the liquid products increases to 50–70 %, and the overall yield of azulene and naphthalene is 5.8 %. As the reaction temperature decreases, the latter dramatically decreases, and the proportion of azulene simultaneously increases (see Table 1, runs 5, 7, and 8). In the presence of mixed bismuth catalysts containing  $\text{MgO}$ ,  $\text{SiO}_2$ , or  $\text{SnO}_2$ , which have been studied previously in the dehydromerization of lower olefins, the yield of fused arenes from piperylene decreased, and the proportion of azulene in them was lower than with the individual  $\text{Bi}_2\text{O}_3$  (Table 2).

Thus, the yields of azulene and naphthalene from piperylene in the presence of  $\text{Bi}_2\text{O}_3$  is almost an order of magnitude higher than that observed previously over dehydrogenation catalysts.<sup>1</sup> The efficiency of bismuth oxide in this reaction is indirect evidence supporting the concept of the abstraction of the H-atom from the allylic position of the piperylene molecule to give a pentadienyl radical, which then undergoes dimerization and aromatization (see Scheme 2). The formation of  $\text{C}_5$  cyclic hydrocarbons, cyclopentene and cyclopentadiene is also consistent with this concept. However, in our case, the pentadienyl radical is probably not dimerized, and, instead, undergoes immediate cyclization to give a cyclopentenyl radical, which is stabilized by adding or eliminating a hydrogen atom. The relatively high content

of benzene and its homologs in the liquid products can be explained by cracking of the dehydromer to yield polyunsaturated hydrocarbons with fewer carbon atoms.

## Experimental

The experiments were carried out in a flow-type setup with a vertical quartz reactor placed in a block electric furnace. Piperylene was introduced using a dosing injector, and the reaction products were collected in cooled coil traps. Simultaneously, air was introduced into the reaction area at a rate controlled by a flowmeter, and in some cases, steam was also introduced as an additional diluent. The conditions of the experiments are presented in Tables 1 and 2.

The reaction products were analyzed by GLC using a 40 m × 0.25 mm stainless-steel column wetted by Apiezon N. The analysis was carried out at 130 °C, which allowed azulene and naphthalene to be eluted, along with mononuclear arenes. Azulene and naphthalene were also isolated by preparative chromatography of the reaction mixture on a column with  $\text{Al}_2\text{O}_3$  (using isopentane as the eluent). Both isolated products were identified by their UV spectra.

$\text{Bi}_2\text{O}_3$  was obtained from  $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$  dissolved in concentrated  $\text{HNO}_3$ .  $\text{Bi}(\text{OH})_3$  was precipitated from this solution by adding a 15 % solution of  $\text{NH}_4\text{OH}$  (to pH 3). The precipitate was washed with distilled water on a filter, dried at 150 °C, and calcined in a muffle furnace for 6 h at 550 °C.  $\text{Bi}_2\text{O}_3-\text{MgO}$  was prepared by wet mixing of  $\text{MgO}$  and  $\text{Bi}_2\text{O}_3$  powders (the fraction less than 63 mm in size) followed by drying and calcination, as described above. The  $\text{Bi}_2\text{O}_3-\text{SnO}_2$  catalysts were obtained by precipitating  $\text{Bi}(\text{OH})_3$  in the presence of an  $\text{SnO}_2$  powder, prepared by dissolution of metallic tin in concentrated  $\text{HNO}_3$ , according to a known procedure.<sup>12</sup> The mixed  $\text{Bi}(\text{OH})_3-\text{SnO}_2$  precipitate was centrifuged, and then, after washing with distilled water and repeated centrifugation, it was dried and calcined as described above. Bismuth-containing precipitates caked during the calcination to give a solid material, which was then milled, and the 1–2 mm fraction was picked up. The  $\text{Bi}_2\text{O}_3-\text{SiO}_2$  samples were prepared by impregnation of  $\text{SiO}_2$  grains (1–2 mm) with a solution of  $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$  in  $\text{HNO}_3$  followed by evaporation, drying, and calcination as described above.

## References

1. K. M. Gitis and M. I. Rozengart, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1975, 1685 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1975, **24** (Engl. Transl.)].
2. H. E. Swift, I. E. Bosik, and I. A. Ondrey, *J. Catal.*, 1971, **21**, 212.
3. K. Ohdan, T. Ogawa, S. Umemura, and K. Jamada, *J. Chem. Soc. Jpn. Ind. Chem. Soc.*, 1970, **73**, 842.
4. T. Seiyama, M. Egishira, T. Sakamoto, and F. A. Rusala, *J. Catal.*, 1972, **24**, 76.
5. E. A. Mamedov, G. B. Keulke, and F. A. Rusala, *J. Catal.*, 1981, **70**, 241.
6. F. E. Massoth and D. A. Scarpello, *J. Catal.*, 1971, **21**, 225.
7. J. Kaber and B. Orzibowska, *J. Catal.*, 1973, **28**, 489.
8. T. Seiyama, T. Uda, and M. Egashira, *J. Catal.*, 1974, **34**, 29.
9. L. M. Kaliberdo, M. L. Tselyutina, A. S. Vaabel', V. M. Kaliknan, and V. N. Shvetsov, *Zh. Fiz. Khim.*, 1979, **53**, 1495 [*Russ. J. Phys. Chem.*, 1979, **53** (Engl. Transl.)].
10. E. G. Galid-Zade, E. A. Mamedov, and R. G. Rizaev, *Kinet. Katal.*, 1979, **20**, 405 [*Kinet. Catal.*, 1979, **20** (Engl. Transl.)].
11. T. Tomas, *Promyshlennye kataliticheskie protsessy i effektivnye katalizatory* [Industrial Catalytic Processes and Efficient Catalysts], Mir, Moscow, 1973 (Russ. Transl.).
12. Yu. V. Karyakin and I. I. Angelov, *Chistye khimicheskie veshchestva* [Pure Chemical Compounds], Khimiya, Moscow, 1974, 181, 296 (in Russian).

Received October 30, 1995

## Analysis of chiroptical properties of $\pi$ -allyl complex $[\text{Pd}(\beta\text{-pinenyl})\text{Cl}]_2$

A. P. Klyagina, T. V. Misailova, I. F. Golovanova,\* and S. P. Gubin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences,  
31 Leninsky prosp., 117907 Moscow, Russian Federation.

Fax: +7 (095) 954 1279

Electronic absorption and circular dichroism spectra of the optically active  $[\text{Pd}(\beta\text{-pinenyl})\text{Cl}]_2$  complex (**1**) have been studied. The assignment of the bands in the circular dichroism spectrum in the d-d-transition region of complex **1** was made within the framework of the one-electron model of optical activity; this assignment is in agreement with the literature data on the analysis of the absorption spectrum of  $[\text{Pd}(\text{allyl})\text{Cl}]_2$ . The (1*R*,2*S*,3*S*,5*R*) absolute configuration was suggested for the optical (+)<sub>589</sub>-isomer of **1** studied.

**Key words:** chirality, absolute configuration; circular dichroism; electronic absorption spectra;  $\text{Pd}(\pi\text{-allyl})$  complexes.

$\pi$ -Allyl complexes of  $\text{Pd}^{II}$  are widely used in synthesis and catalysis, including their asymmetrical variations.<sup>1,2</sup> However, studies of the relationship between the stereochemistry and the optical activity of complexes, which were started as early as 1970s<sup>3</sup> and which are necessary for performing stereospecific conversions, are not yet widespread. The precise assignment of transitions in the electronic absorption and circular dichroism spectra of compounds is necessary for revealing these correlations. Analysis of electronic absorption and circular dichroism spectra of organometallic compounds may substantially help in the study of the nature of chemical bonds and characteristic features of the structures, which cannot be currently calculated by quantum-chemical methods.

Electron transitions are generally more pronounced in the circular dichroism spectra. Therefore, we use the circular dichroism method for studying chiral  $\pi$ -allyl complex  $[\text{Pd}(\beta\text{-pinenyl})\text{Cl}]_2$  (**1**). Analysis of the circular dichroism spectrum was carried out within the framework of the one-electron model of optical activity.<sup>4,5</sup> To our knowledge, such analysis of  $\pi$ -allyl complexes has not been previously performed. Interest in chiroptical properties of complex **1** is also associated with the use of this complex in the synthesis of the new chiral  $[\text{Fe}_3\text{CoCPd}(\beta\text{-pinenyl})(\text{CO})_{12}]$  cluster.<sup>6</sup>

Complex **1** was prepared by the reaction of  $\text{Na}_2\text{PdCl}_4$  with  $\beta$ -pinene ( $[\alpha]_D -19.7^\circ$ ) using the known procedure.<sup>7</sup> The compound obtained is characterized by a